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The D (n,p)2n reaction is treated in a direct interaction framework wherein the phenomenological nucleon-
nucleon potentials of Gammel and Thaler are used to describe the perturbation interactions. Tensor forces 
as well as central forces are included and final-state interactions among the particles is considered. The final 
state is pictured as a continuum deuteron plus free neutron or as a continuum dineutron plus free proton. 
To the extent that this picture is accurate it is found that the main contributions to the cross section are 
supplied by the doublet to doublet transitions. The calculations furthermore suggest a "best choice" for the 
triplet—even parity—central potential. A comparison with the experimental results of Ilakovac and co­
workers at 14.4 MeV is presented. 

I. INTRODUCTION 

T N many nuclear reaction processes a non-negligible 
•** contribution is accrued through a direct phenome­
non in which the incident nucleon interacts with one, or 
at least very few, of the nucleons in the target nucleus. 
The reaction proceeds before the energy can be shared 
among a large number of particles and consequently the 
dynamics of the entrance channel become pertinent to 
the reaction description. To more adequately describe 
such a nuclear reaction mechanism then, direct inter­
action models have recently been utilized, and with 
modest success, for example, in stripping reactions. 
Some theoretical calculations have been made for direct 
interaction single-particle emission processes but to date 
little has been done on multiple-particle reactions. 

One of the simpler of such multiple-particle emission 
processes, which has been studied by several authors,1-4 

is the D(n,2n)p reaction occurring for neutrons of 
energy greater than 3.339 MeV. Komarov and Popova5 

have treated the mirror process D (p,2p)n, which with 
the exception of the Coulomb forces is essentially the 
same reaction. In that process the experimental data 
have prompted considerations of final-state interactions 
between the two protons as well as between the neutron 
and proton. Later work by Ilakovac, Kuo et a/.6,7 has 
shown that analogous considerations have to be made 
for the D (n,2n)p reaction. These people, in like fashion 
to Komarov and Popova, work with a delta function-
perturbation potential and a square-well interaction for 
final-state wave-function computations. In the present 
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work, we will calculate the reaction cross section by 
employing the phenomenological nucleon-nucleon po­
tentials of Gammel and Thaler8 to represent the per­
turbation interaction and also to derive the final-state 
deuteron and dineutron wave functions. The deuteron 
and dineutron are spoken of in the continuum sense and 
are intended to describe the final-state interactions 
mentioned above. 

In speaking of a perturbation interaction we are 
utilizing direct reaction theory in which context the 
Born approximation is used; the particle-particle inter­
action is treated as a perturbation on the system of 
nucleus plus free nucleon and it is this interaction that 
causes the transition, or nuclear reaction. The Born 
approximation has been used by others1"5 and its 
justification9 in this energy region and for this type 
process seems not too unreasonable. For the general case 
of a target nucleus consisting of A nucleons a more 
accurate treatment of the incoming nucleon includes a 
distortion of the plane wave representing the motion of 
the incident nucleon. This distorted wave is usually 
calculated with an optical potential to depict the in­
fluence of the total nuclear field on the extra nucleon. 
Here, however, the potential describing the cumulative 
effect of all the nucleons present in the target nucleus is 
merely Vnn(\ 1*1— r31)+ Vnp(\ 1*2— r31), which is just the 
perturbation potential. A distorted (incident) wave 
calculation would therefore be superfluous. 

From standard perturbation theory the expression for 
the differential cross section for transitions into the 
continuum is 

da=(2ir/fiv)\Hfi\*p(Ef), (1) 
where v is the velocity of the incident nucleon, p(E/) is 
the density of final states, and Hf{ is the matrix element 
between initial and final states, or transition amplitude; 

d Hfi~ j $final Finteraction</>initial#T. (2) 

8 J. L. Gammel and R. M. Thaler, Progr. Elem. Particle Cos­
mic Ray Phys. 5, 99 (1960). 

9 W. Tobocman, Theory of Direct Nuclear Interactions (Oxford 
University Press, London, 1961). 
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The coordinate system and Hamiltonian description are 
essentially those of Bethe and Gluckstern.3 From an 
interpretation of the final state as a continuum deuteron 
plus free neutron or as a continuum dineutron plus free 
proton we will write the transition amplitude as a sum 
of the (n,p) amplitude and the (n,nf) amplitude. In 
other words, the reaction process is viewed as prog­
ressing through both an (n,p) mode and an (n,nf) mode. 

II. POTENTIALS AND WAVE FUNCTIONS 

For the energy range to be considered here we will 
make the calculations assuming 1=0. The choice of the 
phenomenological potentials of Gammel and Thaler to 
describe the interactions Vnn and Vnp may seem some­
what arbitrary in view of the several other (e.g., Ref. 10) 
descriptions of nucleon-nucleon forces; however, argu­
ments for the selection of one potential description over 
another are not impelling. It was felt that the G-T 
potentials were a satisfactory description, although 
Gammel and Thaler point out that the status of the n-p 
interaction is not satisfactory. These potentials are 
spin-dependent, parity-dependent, of Yukawa shape, 
and possess a hard core. With the assumption /=0we 
will be interested only in the even parity components 
which are listed in Table I. The original work lists 
several possibilities for the triplet interaction, three of 
which are given here. 

The ground-state deuteron wave function has been 
chosen disregarding the tensor force contribution and is 
of the Hulthen type, that is 

^o(f) = ^[exp(-ar) / f ] ( l -exp[- /*c(f- fo)]) , (3) 

where 

N=exp(ar0) 
2a(a+/zc)(2a+/xc)-|1/2 

4:Wflc 

(4) 
a=(MEb/h

2yt2, £&=2.226MeV, 

fJLc=Vc from Table I , 

and r0=0.4(10)~13 cm. In the description of the final-
state continuum deuteron and continuum dineutron the 
radial wave function is a numerical solution of the 
equation 

( — +#+J[exp(- /o0/w] k> 60 = 0 
\dy2 / 

(5) 

in which the potential b exp(—/ry)//x;y is the appropriate 
G-T central component. For the final state we use 

^nai=i:-3/2{exp(ik'.x)^^,(r)} 

or (6) 

*finai=£-3/Hexppk'". ( - f r -x /2) ]**iv(x-r /2)} , 

which is the description referred to earlier, that of a 
10 T. Y. Wu and T. Ohmura, Quantum Theory of Scattering 

(Prentice-Hall, Inc., Engelwood Cliffs, New Jersey, 1962). 

TABLE I. Potentials. Triplet even-parity potentials which fit the 
binding energy and electric quadrupole moment of the deuteron 
[and scattering length 3a = 5.39(10)~13 cm] and singlet even 
parity potential which fits a singlet scattering length of about 
— 23.74(10)~13 cm and a singlet effective range of about 2.65 (10)~13 

r+ Vc
+ 

(10-13cm) (MeV) 
tic 

(1013 cm"1) 
Vt

+ 

(MeV) 
Mr 

(1013 cm"1) 

0.4 

0.4 

87.724 
726.69 
1593.5 

434.8 

Triplet 
1.2183 
1.9554 
2.2754 

Singlet 
1.45 

272.87 
121.04 
52.435 

1.2183 
0.97772 
0.75847 

continuum deuteron plus free neutron and a continuum 
dineutron plus free proton. The ^ 's result from an ex­
pansion in partial waves, that is 

™Ai<t>i(y) 
* = E Pi(cosd). 

i=o y 
(7) 

This expression becomes 

^=Aod)o(y)/y with the restriction 1=0. (8) 

We also subject $o to the boundary conditions 

(j>=0 at y=ro 
and 

<l) = sm.(ky+7]) at y=<x>. 

By requiring that \F asymptotically approach the wave 
function describing an incident plane wave and a 
scattered spherical wave we get A0=exp(ir})/k. 

Since the continuum deuteron can be either in a 
singlet or triplet spin state we have ^k"', the triplet 
state, and ^k"8, the singlet state. For the dineutron we 
have only ^kiv% the singlet state. The momentum nota­
tions are &k", hk"f, and hkiv

y which are conjugate to the 
coordinates r, — Jr—x/2, and x—r/2, respectively (see 
Fig. 2 for further explanation of kJs). 

The spin portion of the wave function can be calcu­
lated with the help of the Clebsch-Gordan coefficients. 
In a representation in which az is diagonal, the spin-J 
eigenfunctions are 

^ X l / 2 l / 2 ( ' 

and 

^1/2 
-1/2 

«>C) 
- 0 -

(9) 

For the initial state it is best to couple first the spins of 
particles 1 and 2 in the deuteron and then couple the 
resultant angular momentum to the spin of the neutron. 
Consequently for the deuteron 
X/m(l,2) = i : C(i i / ; s, m-s)X1/t'(l)X1/2^(2), (10) 

and for the deuteron-neutron system, 
XJM=Y, C(hIJ;mh lf-m1)X1 /2-1(3)X J^-1(l J2). (11) 
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TABLE II. Spin+space wave-function combinations.a 

7=4; 
for 7 = 1 
o r 7 ' = l 

J=h 
for 7 = 1 
o r 7 ' = l 

J=h 
for J ' = 0 

^ (deuteron) 
Mag­
netic 
sub-
state 

w,- = f 
ntj = h 
w , - = - J 
mj=— f 

m, = J 
mj=— i 

ntj = i 
ntj=-§ 

Spin 
func­
tion 

Xi 
X2 
X3 
X4 

X5 

X6 

X? 
X8 

Space 
func­
tion 

¥«(<*) 

¥*(d) 

^ s(d) 

^ (dineutron) 
Mag­
netic 
sub-
state 

Mj = i 
m,- = $ 
m}=-i 
m,= - f 

Mj=i 
! » / = - } 

w,- = i 
m y = - | 

Spin 
func­
tion 

Xi 
X2 
X3 
X4 

Xs' 
Xe' 

X7' 
X8' 

Space 
func­
tion 

^'(din) 

^*(din) 

* s(din) 

a The superscript on the space wave functions denotes the singlet, s, or 
the triplet, /, combination of the two nucleons in the two-body particle. 

This leads to a set of spin functions X»(i= 1 — 8) of which 
four are quartet states, two correspond to an 7=1 
deuteron coupled to a spin \ neutron to give a J= \ 
state, and two states correspond to an 7=0 deuteron 
coupled to a spin-J neutron. 

To explicitly display the symmetry or angular mo­
mentum coupling of particles 1 and 3, we first couple the 
spins of particles 1 and 3 and then couple the resultant 
to the spin of particle 2. 

III. CROSS SECTION 

We shall be considering transitions between states of 
sharp angular momentum of the "composite" nuclei, 
here the two-particle nuclei; in the initial state the 
deuteron and in the final state a deuteron and also a 
dineutron. Not only does the 7= 1 to V = 1 (7 or V is the 
angular momentum of the two-body particle) transition 
lead to the reaction we are considering but also the 7=1 
to V = 0 transition. The cross section therefore consists 
of two parts; 

da=da(I=l,r=l)+d<r(I=lyr = 0). (12) 

In other words, the spin of the two-body particle is 
treated as a good quantum number and therefore the 
7=1 to 7 '=1 and 7=1 to 7' = 0 transition rates are 
computed incoherently. Since we will not be observing 
magnetic substates and since we will be working with a 
statistical distribution of spin orientations in the initial 
state we must average over initial spin directions and 
sum over the final spin states. 

In Table II we have delineated the spin and space 
functions to be associated with the particular substates 
indicated in the cross section expression. 

Since, as was mentioned earlier, no triplet dineutron 
states exist, do-(1,1) contains for the final state only 
'̂deuteron. From Eq. (2), 

* - = / , ^f^Vmt^idr 

= <(l/v2)(l^Pi8e1 8)^ /X / |7n„(|r1 8 | ) | 

X(l /v2)( l -P 1 3ei3)^x,) 

+<(l/V2)(l-P1 8gi8)^/X / |Fn i ,( |r28|) | 

X ( l / v2 ) ( l -P i 3 e i3 )^^ ) . (13) 

The operator (1/V2)(1 —Pi3<2i3) antisymmetrizes the 
wave function to account for the indistinguishability of 
the two neutrons. The operator P i 3 permutes the space 
coordinates and Qu the spin coordinates of the neutrons 
1 and 3. As pointed out by Bethe and Gluckstern the 
perturbation V must be the interaction between the 
particle described as free in ^ , or Pu^fi, and the other 
two. This yields 

ff/i=<(i/^)(i-Pi8ei8)^/X/i(i/^)(i-p18ei8) 
X[7 n »( | r i 8 | )+ V np V I 1*23 

= < ( l - P i 8 e i 8 ) ^ / X / | 7 „ n ( | r i 8 | ) 

+ Vr»p(|r28|)|*tX<>, (14) 

since (1 — PuQu) is Hermitian and (1 — P13Q13)2 

= 2(1-P18018). < 

The perturbation potentials Vnn and VnP are de­
pendent on the spin states of particles 1 and 3 and 
particles 2 and 3. The X{ will therefore have to be ex­
panded to display the requisite spin orientations. For 
i— 1 to 4, for example, all pairs of particles are in triplet 
states. This means that only the triplet component of 
the perturbation potential will be effective in these spin 
states. The two sets of spin functions mentioned earlier 
explicitly show the spin coupling of particles 1 and 2 and 
of particles 1 and 3. In a similar fashion one can con­
struct another set to explicitly display the spin coupling 
of particles 2 and 3. The spin functions in any set can 
then be expanded in terms of the spin functions in any 
other set. This expansion allows one to associate the 
correct perturbation potential with its component in the 
wave function. 

Neglecting, for the moment, the tensor force and 
performing the spin sums we get 

:* |<(1-Pi8)** '< 'nr)exp(-^ 
+ itfnp|*o(r) exp(*.x)>-<Pi8^jb-'*(r) exp(- ik ' .x) | -iUnn+2Unp\*0(r) exp(*-x))|2 

+*|<*Jb"'*(r) exp( - ik , . x ) | 2 C/ n n +3^ |^oW txp(ik'X))-(P1^k^(r) exp(-ikf^x)\-2Unn 

+AUnp\Mr) exp(;k.x)>+<^iv**(x-r/2) txp(ikfff'Hi+x/2J)\^Unn+bUnp\Mr) exp(&.x)> 
- < P i 3 ^ * ( x - r / 2 ) exp(;k'".[fr+x/2])| -JJnn-JJnMr) exp(ik.X))|2 (15) 
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where 
iUnn=lWnn(\x-t/2\), 3Unn=-V3/2iVnn(\x-r/2\), 
xUnp=lWnp{\x+x/2\)+\Wnp(\x+t/2\), ,Unp=^3/HWnp(\x+r/2\)-Wnp(\x+r/2\)), 

(lo) 
» ^ n » = W 4 1 ^ . » ( | x - r / 2 | ) , 4^np=-VS/2 i7 . , ( | x+r /2 | ) , 
2Unp=-iWnp(\x+r/2\), s ^ p = - ^ / 4 ( « 7 » J ( ( | x + r / 2 | ) + 1 7 » , ( | x + r / 2 | ) ) . 

Performing the indicated permutations we get 

& r « f | 7 l - / * | , + i | i / l + i / 2 + i / 3 + i / 7 + | / l l | , + * | ( ^ / 2 ) ( i / » - 2 / 4 + i / 6 + i / 8 - / » + / l 0 ) | S (17) 

where 

h = /V*»'*(r) exp(-ik'-x)3F„ J )(|x+r/2|)[^oW exp(ik-x)jdrdx, 

/*= /W< (*(x+r/2) exp(-*k'-[fr-x/2J) sFB J )( |x+r/2|)[>oM exp(*k.X)]drdx, 

Z8= ftk»>*(x+t/2) exp(-4 ' - [ | r -x /2]) 1 7. , , ( |x- r /2 | )C^o(r ) exp(ik-x)]drdx, 

h= /V**'*(x-r/2) exp(ik"'-[ |r+x/2])1FM„(|x-r/2|)[^oW exp(ik-x)]drdx, 

h= /V*»«*(r) exp(-ik'-xyvnn(\x-r/2\)ty0(r) exp(*k-x)]dnlx, 

/ 4 = /V*»'*(x+r/2) exp(- tk ' -Br-x/2]) IF»»( |x-r /2 | ) [>o(r) exp(ik-x)]drdx, 

7 (18) 

77= /V*»'*(r) exp(-ik'.x)1F„3)(|x+r/2|)C^oW exp(ik-x)]drdx, 

Z8= /**»'*(*) zM-iK-x)[_Wnp{\x+r/2\)-Wnp(\x+t/2\)J_Mr) exp(ik-x)]drdx, 

/»= Uk^*(x-i/2) exp(ik"'-C|r+x/2])C3Fnp(|x+r/2|)+1FTCp(|x+r/2[)][^oW exp(ik-x)]drdx, 

/io= Ah» s*(x+r/2) e x p ( - i k ' - [ | r - x / 2 ] ) 1 F n p ( | x + r / 2 | ) [ ^ W exp(ik-x)]drdx, 

and 

/ n = UV>'*(T) exp(-ik'-xyvnn(\x-r/2\)[$0(r) exp(ik.X)]drdx. 

In 11, Z2, l-i, Z8, Zio, and 7n one can make the substitu- or Z9, and these integrations were likewise done nu-
tion r = r and x+r /2 = y, the Jacobian of this trans- merically. The limits on the radial integration are from 
formation being unity. In Z4 and Z5 one can make the r<>, the radius of the hard core, to °°. 
transformation t—t and x—r/2 = y, the Jacobian again Let us now consider the tensor force contribution to 
being unity. These transformations allow one to inte- the cross section. We have 
grate over angles and over one of the radial variables 3T/_3T/ — av \ j _ m / "i (io\ 
and we are left with a single radial integral in y or r. w h e r e

 V ~ Vnp~K K"»*"*™n-t. ^Wtensor, {U) 
This remaining radial integration was performed nu- (iV •, __3T/r / \i no (i(\\ 
merically on the IBM-7094 computer (see Appendix). KV *)*,**- k«L«qH n<r)/inr^n ^u; 
A transformation does not simplify the integrals Z3, Z6, and where i, j denote the interacting particles (2 and 3 
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in our notation). Also 

Sij = 5*23=3 (or2 • n) (o-3 • n) — (cr2 • <F3) , 

where n is the unit vector along the line joining the two 
particles. In the spin representation chosen here crz is 
diagonal. If we choose the vector direction q (q=k'—k) 
as the polar or Z axis, we have the coordinate system 
displayed in Fig. 1. 

Whereas with the central force the off-diagonal ele­
ments were zero (i.e., m quantum number conserved) 
we now get a finite contribution to the cross section from 
some of them. Upon calculating the tensor force-matrix 
elements it is found that the only nonzero terms appear 
in da (quartet). Since interference terms between central 
and tensor forces are proportional to the trace of Su (in 
spin space) and since this trace is zero, the tensor force 
components are incoherent with the central force 
elements. 

In general, the tensor force induces quartet to doublet 
and doublet to quartet transitions as well as quartet to 
quartet transitions. However, doublet to doublet transi­
tions do not occur. This latter statement can be verified 
by direct calculation but can also be proved in the 
following manner: The tensor force can be written as a 
scalar product of a tensor operator of rank two (oper­
ating in spin space) and the spherical harmonic of second 
degree.11 Applying the Wigner-Eckart theorem12 to 
matrix elements involving such an operator we get 

(jW\TLM\jm)=C(jLf;mMmf)(j\\TL\\f). (21) 

FIG. 1. Coordinate system for tensor force integrations. 

This C coefficient vanishes unless the triangle condition 
A(jLj') holds; i.e., C(£2§; wMw') = 0. For / = £ , then 
J' must equal f or f. Since we are here considering /= 0, 
total angular momentum conservation forbids the 
quartet-doublet and doublet-quartet transitions. We are 
left then with only the quartet-quartet transitions and 

^CTtensor a " 
2/+1 

-( z)E|fl7«l2. (22) 
2(2/+l) v 

Thus, after performing the indicated spin sums, 

^tensor < * | X | X { 4 | < ( 1 - •Piz)*,Wnv 

+2|<(1-P«. 
+2|((1 
+ 2 |<(1-P1 3)* / rnp 

+2|<(1 

tensor̂  J x + r / 2 | )[3 COS2/*" 1>») 12 

;)*/ 3Fnp
tensor( [ x+r/21 )[exp(2w)\5 sinV>;> 12 

P13)*/ Wnp
tensor( I x+r/21 )[exp(- liv)^ sinV]*<> 12 

np 
y tensor (I x+ r/21 )[exp(^)2v3 sin/x COSM>;>|2 

-Pn)*f
 3Fn/e n s o r( |x+r/2|)[exp(--^)2v5 sinM COSM]*;>|2} . (23) 

After making the change of variable r = r and x+ r/2 = y 
the direct integrals in the last four elements vanish in 
the integration over the azimuthal angle v. To incorpo­
rate further the approximation that we are concerned 
only with s-wave encounters, we now need to expand the 
plane wave functions in a Rayleigh expansion. For 
example, 

exp(iq.y)= Z(i)l(2l+l)Pl(cosd)jl(qy), 
1=0 

where 6 is the angle between q and y, Pz(cos0) is the 
Legendre polynomial, and ji(qy) is the spherical Bessel 
function. This plane wave becomes, in our approxi­
mation, 

exp (iq • y)« sinqy/qy; 
11M. Verde, in Randbuch der Physik, edited by S. Fliigge 

(Springer-Verlag, Berlin, 1957), Vol. 39, p. 164. 
12 M. E. Rose, Elementary Theory of Angular Momentum (John 

Wiley & Sons, Inc., New York, 1957). 

comparable substitutions are made for the other plane-
wave functions. Now in similar fashion with the direct 
integrals the exchange integrals in the last four elements 
vanish in the integration over the azimuthal angle p. 
The other integrals vanish in the integration over /*. 
T h u s ^0-tensor— 0 . 

FIG. 2. Velocity vector diagram. 
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FIG. 3. Coordinate system for integration over d&iy. 

Referring now to Eq. (1), let us rewrite the cross 
section formula to allow a comparison with the experi­
mental data. We have 

dp '" dp iv dk '"dk i v 

P(Ef)dEf=-—X-
(2*)« 

(24) 

We will be calculating an energy spectrum of the 
emitted protons and thus the use of k"', the wave 
vector for the proton. In observing the proton we will be 
fixing the angle and energy, i.e., fixed k'"; the magni­
tude of kiv is determined from the energy equation and 
the remaining degrees of freedom (direction of kiv) are 
removed by integrating over J12iv. We can write there­
fore 

/o(E /)=(^ iv)2J12 iv(^ iV^/)k'-[dk / /V(27r)6], (25) 

where we can deduce 

(dk*/dEf)k>„ = M/2m" 

from the energy equation 

h2(k'")2 h2(kiv)2 

" (26) -=Ef 

w M 

To transform to the laboratory system consider the 
vector diagram in Fig. 2. We let v3=velocity of the 

- THEORY 
0 EXPERIMENT 

FIG. 4. Energy spectrum of protons emitted at 4° lab and com­
parison with experimental data. 

"deuteron" system about the cm. and v'=velocity of 
the scattered neutron about the cm. to correspond to 
the earlier notation. Then v3= — v'/2 and since v'"= v3 

— v", the velocity of particle 2 in the laboratory system 
is 

Vlab= V'"+ V0.m.= V3~ v"+v/2 , 
or (27) 

k ' " = - k ' / 2 - k " , 
and 

k„=kiab(particle 2)= - k ' / 2 - k " + k / 2 . (28) 

We also need viv (or kiv), but 

2viv= v ' - (v3+ v") = f v ' - v", (29) 

kiv=fk'-4k". 
or 

From these equations we can express, where necessary, 
k' and k" in terms of k'" and kiv. 

Furthermore since 

k p = k ' " + k / 2 , 

d k p = d k ' " = kp
2dkpdttp= kp(M/W)dEpdttp 

(30) 

-

-

-

-

3 V c a 1593.5 
Ju£ = 2.2754 

3VJN 87.724 
3ywJ* 1.2183 \ ^ ^ 

3V^= 726.69 

^Xj« 1.9554 

C& 
FIG. 5. The differential cross section as a function of the triplet 

potential strength. 

Thus the "inelastic neutron emission" cross section 
becomes 

2<jrkw/2M\/M\2 2kpdEpdttp 

2h \3hkJ\z 

M y 2kpdtipd\lp r 

~WJ (2TT)6 J ^ 

2<fi2iv 

1 / M \ 3 kpk
iy r 

= — I dEpd£lp \Bfi\ 
6(2Ty\h2J k J 

W v (31) 

where we have divided by a factor of 2 to account for 
the indistinguishability of the two neutrons. In a 
quantum mechanical treatment there is included in the 
inelastic scattering calculation those processes wherein 
the "target" neutron is ejected into the solid angle dtt 
and so (in the strict sense of the inelastic process where 
the incident particle emerges with a degraded energy) 
we must include this factor of 2 to compensate for the 
fact that we have included two "neutron emission" 
possibilities. Of course experimentally, if one observes 
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"neutrons," one will not be able to distinguish their 
origin, and therefore to compare experiment with theory 
one needs to multiply the "inelastic neutron emission" 
cross section by 2. The differential cross section per 
unit solid angle per unit energy then becomes 

dcr 
1 \ / \Hfi\*<m*. (32) 

2 T T ) 5 U 2 / k J dttpdEp 6(2TT) 

The coordinate system for the integration over dOiv is 
shown in Fig. 3. We want the final expression in terms 
of the angle between k and kp and so use 

k . k ' " = * * " ' cos(k,k'") = k . k p - K k . k ) (S3) 
and 

cos(k,kiv) = -
k-k* 

kkiv 
-=cos(k,k'") cos0 

+sin(k ,k" ' )cos0sin0. (34) 
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FIG. 6. The differential cross section versus angle (k,kp). 

From the energy equation we have 

or 

where 
(k^Y=UK2-{kp'+k^-k'kp}), (35) 

K2=k2-i(M/W)XEb. 

In constructing an energy spectrum of emitted protons 
at a given angle (k,kp), we let kp vary from zero up to a 
maximum 

kp (max) = k/2 cos (k,kp) 

+ {£2/4 cos2(k,kp)+ ( Z 2 - ^ 2 / 4 ) } 1 / 2 (S6) 

and determine kiv from Eq. (35). 

IV. COMPARISON WITH EXPERIMENTAL 
RESULTS AND DISCUSSION 

The major contributions to the cross section come 
from the doublet transitions, namely da(I= 1, i"'=0) 
and the / = \ portion of da(I= 1, V= 1). The quartet to 
quartet matrix elements are smaller by at least two 

0 .1 .2 .3 kp( rfcm) -7 -8 -9 

FIG. 7. The differential cross section versus angle (k,kp). 

orders of magnitude than the doublet-doublet matrix 
elements, however the doublet transitions mentioned 
above are of the same order of magnitude. Therefore, 
the present treatment does not allow one to neglect the 
da(I= 1,1'= 1) doublet contribution. This result is to be 
contrasted with the work of Komarov and Popova.5 

In Fig. 4 we compare the present theoretical calcula­
tions with the experimental data of Ilakovac et al.6 This 
figure displays the energy spectrum of protons emitted 
at an angle of 4° in the laboratory system and an inci­
dent neutron energy of 14.4 MeV. No attempt has been 
made to smear the theoretical calculations in this com­
parison. Figure 5 shows the dependence of the cross 
section calculations on the choice of triplet-even-parity-
central potential. The behavior of the two peaks in the 
spectrum, that is their dependence on the triplet-even-
parity potential, is as expected since the high-energy 
peak (& iv=0) corresponds to the neutron-neutron inter­
action, which is singlet only, and the low-energy peak 
(k" = 0) corresponds to the interaction between neutron 
and proton, which is both singlet and triplet. There is 
some contribution to the high-energy peak from the 
neutron-proton interaction and thus the increase indi­
cated in Fig. 5. I t is readily seen from these results that 
the best agreement with the experimental data is 

•' kp((IO)13cm) -3 -4 

FIG. 8. The differential cross section versus angle (k,kp). 
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FIG. 9. The differential cross section versus incident neutron 
energy. The cross section (ordinate) is to be multiplied by the 
factor in parenthesis for each energy value. 

attained with the first of the three sets in Table I, that 
is 37 c + = 87.72 MeV and *»+= 1.2183 1013 cm-1. I t is 
to be noted that quantitative as well as qualitative 
agreement with experiment is achieved in the present 
treatment. Furthermore, the marked quantitative de­
pendence of these calculations on the strength and range 
of this potential suggest the possible use of these reac­
tion data in the phenomenological approach to the 
nucleon-nucleon interaction. 

Proton energy spectra have been calculated at several 
angles and the results are shown in Figs. 6-8. These 
particular calculations have been performed with the 
above "best fit" potential parameters and at an incident 
neutron energy of 14.4 MeV. One observes that the 
high-energy proton peaking prevails in the backward 
directions as well. This result is in agreement with 
recent calculations by Ferroni and Wataghin,13 for 
example, but in disagreement with the experimental 
results of Ref. 14. 

The dependence of the cross section on the incident 
neutron energy is shown in Fig. 9. As the neutron energy 
is decreased these calculations are perhaps not expected 
to give good results due to the present description of the 
reaction mechanism. The complications of the three-
body problem are more manifest when the momentum 
of the incoming particle is comparable to the momentum 
of the particles in the deuteron. 

In summary the present calculations seem to give 
fairly good agreement with the experimental data 
although one needs to ascertain the effect of neglecting 

13 F. Ferroni and V. Wataghin, Nuovo Cimento 28, 2888 (1963). 
14 K. Ilakovac, L. G. Kuo, M. Petravic, I. Slaus, and P. Tomas, 

Nucl. Phys. 43, 254 (1963). 

/ > 0 angular momentum encounters with the resulting 
tensor and spin-orbit contributions to the cross section. 
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APPENDIX 

The problem as presented to the IBM 7094 consisted 
of evaluating the following expression: 

da r* 
—=2Tkivkp I H(<t>) sin(0)<fy, 
A J 4=0 

where 

and 

and 

(H2y= (i/H-|/7+*/2+f/8+i/n), 
{H,Y=a?+V-2ab c o s f e - ^ i ) , 

a= hh~\rhh+ Ks+Zio, 

Z>=2/4+/9 . 

The arguments r?i and 772 represent the asymptotic 
phases, respectively, of the singlet dineutron and singlet 
deuteron. 

As mentioned in the text, some of the integrals are 
simplified by transformations and can be reduced to a 
single integral over a radial variable; however, 73, /6 , 
and I9 cannot be so simplified and thus require integra­
tion over the six-dimensional product space of x and r. 
The 1=0 approximation is further manifested by re­
placing the plane wave functions by their spherically 
symmetric Rayleigh expansion components [sm(kx)/kx, 
etc J , thus reducing the six-dimensional integration to a 
two-dimensional one. 

The Runge-Kutta method was used to solve the radial 
part of the wave equation describing the final-state two-
body particles [Eq. (5)]. The final-state wave functions 
and the initial-state wave functions were then tabulated 
as functions of their spatial arguments; for the final-
state wave functions ^w and ^fkiv, the tabulations were 
also made as a function of the energy parameter k"2 and 
kiy2. The potential functions were similarly tabulated as 
functions of their spatial arguments. Thus the integrals 
involved products, the factors of which were all 
tabulated. 


